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Abstract
We investigate the calorimetric liquid–glass transition by performing simulations of a binary
Lennard-Jones mixture in one through four dimensions. Starting at a high temperature, the
systems are cooled to T = 0 and heated back to the ergodic liquid state at constant rates. Glass
transitions are observed in two, three and four dimensions as a hysteresis between the cooling
and heating curves. This hysteresis appears in the energy and pressure diagrams, and the
scanning rate dependence of the area and height of the hysteresis can be described using power
laws. The one-dimensional system does not experience a glass transition but its specific heat
curve resembles the shape of the D � 2 results in the supercooled liquid regime above the glass
transition. As D increases, the radial distribution functions reflect reduced geometric
constraints. Nearest neighbor distances become smaller with increasing D due to interactions
between nearest and next-nearest neighbors. Simulation data for the glasses are compared with
crystal and melting data obtained with a Lennard-Jones system with only one type of particle
and we find that with increasing D crystallization becomes increasingly more difficult.

1. Introduction

As a glass-forming liquid is cooled, its relaxation time
increases very rapidly and at sufficiently low temperatures, the
relaxation time eventually exceeds the timescale of cooling.
Thus, provided that crystallization is avoided, the system
forms a glass at a temperature Tg and due to the kinetic
effects the non-equilibrium state of this glass depends on
its thermal history [1–15]. In recent years much theoretical
effort has been made to gain a better understanding of the
mechanism(s) responsible for the dramatic slowing down of
the relaxation dynamics as well as to investigate the ageing
dynamics of the system once the system has fallen out of
equilibrium [16–23]. Most of these studies have been done
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for three-dimensional systems since they correspond to the
overwhelming majority of real experiments, with some notable
exceptions in which the (experimental) glass transition has
been investigated in quasi-two-dimensional systems [24–26].
Fewer investigations have been devoted to the question of to
what extend the phenomenon of the glass transition depends
on the dimensionality of the system since experimentally it is
rather difficult to change the dimensions without modifying the
interactions. Nevertheless, such a study is of interest, since it
allows one to estimate the role of the local geometry on the
glass-forming ability of the system. Although it is evident that
with increasing dimensionality D the geometric constraints
decrease, it is difficult to estimate this tendency within an
analytical calculation in a more quantitative way [27–29].
One possibility to address the problem is to use computer
simulations to determine, with a given interaction potential, the
dependence of the thermodynamic and structural properties of
the system as a function of D.
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In the present paper we study therefore how the glass
transition of a binary mixture of Lennard-Jones (BMLJ)
particles depends on its dimensionality D. In the past it has
been shown that such a system shows, for D = 3, many
properties of real glass-formers and thus it can serve as a good
model for glass-forming systems [10, 30–39]. Here we will
focus on the details of the glass transition as characterized by
the specific heat measurements. We will examine the structure
of this system in its glassy state and we will compare the results
with experimental data. Note that here we will not discuss
the relaxation dynamics and we refer to [40–43, 45, 46] in
which such investigations have been done for two-dimensional
systems.

Section 2 of this paper discusses the details of the
simulation, including the type of system and the method by
which it is studied. Section 3 describes the results of the
simulations, starting with microscopic properties of the system,
moving to the macroscopic properties. Concluding remarks are
given in section 4.

2. Model and details of the simulations

Following previous work, we consider binary mixtures of
particles A and B, all having the same mass, m [30–32]. We
extend the usual three-dimensional BMLJ molecular dynamics
simulation to one (D = 1) through four (D = 4) spatial
dimensions. A number of particles, N , is placed inside a box
with edge length L and constant volume V = L D . As in
previous work, periodic boundary conditions are imposed [47].
The interactions between particles are given by the Lennard-
Jones potential, Uαβ(r) = 4εαβ [(σαβ/r)12 − (σαβ/r)6], where
α, β ∈ {A, B}, σAA = 1.0, εAA = 1.0, σAB = 0.8, εAB = 1.5,
σBB = 0.88 and εBB = 0.5 [30]. Here r is defined through
r 2 = ∑D

k=1 x2
k , where xk is the kth Cartesian component of

the interparticle separation. Following common practice, the
potential is truncated and shifted at r = 2.5σαβ [30, 47].
Reduced units are used, with σAA being the unit of length, εAA

the unit of energy, (mσ 2
AA/48εAA)1/2 the unit of time [30], and

Boltzmann’s constant, kB, is set equal to one. The temperature,
T , is controlled by a Nosé–Hoover thermostat [47] with an
effective mass of 48 reduced units. For the molecular dynamics
of the particles, the equations of motion are integrated using the
Verlet algorithm with a time step of 0.02 [30]. The pressure,
P , is monitored using the virial theorem, PV = NT +
D−1

∑
i< j fi j · ri j , where fi j is the force and ri j the separation

between particles i and j .
Part of the simulations were carried out for the

composition A80B20 in three dimensions, a system that has
been studied extensively [30–39]. For D = 1, 2, 3, and
4, the composition A65B35 was selected because it is, unlike
A80B20, stable against crystallization for D = 2 at the cooling
rates employed here. All simulations begin with the system
in equilibrium at a sufficiently high initial temperature. The
temperature is lowered at the rate −γ to T = 0 and then
increased back to the initial temperature at the rate γ , where
γ = 1.0×10−3, 1.0×10−4, and 1.0×10−5. Further simulations
with γ = 1.0 × 10−6 have been performed for D = 2, 3,
and for D = 2 additional simulations were carried out at

γ = 1.0 × 10−7. The A80B20 system was studied with γ in
the range from γ = 1.0 × 10−3 to γ = 1.0 × 10−7. For
D = 1, 2, and 3 the number of particles is N = 1000, while
N is 2000 for D = 4. To increase the statistical significance
of the results, data are averaged over independent runs with
different initial configurations. At the starting temperatures the
relaxation times are very short, equilibrium is rapidly attained
and the statistically independent starting configurations are
readily obtained. The starting configurations for D = 1
simulations are random sequences of A and B particles. In
general the results represent averages over 100 runs. Due to
computation time constraints, only 20 runs are used for the
D = 4, A65B35 system as well as for A80B20 with γ �
1.0 × 10−6.

The particle density ρ for the A80B20 simulations is the
same as in previous work with L = 9.4 in D = 3, i.e. ρ =
N/L D = 1.204 [30]. To establish a common reference
point for all A65B35 systems at different dimensionalities, the
system volume was chosen such that the simulation pressure is
approximately zero when the temperature reaches T = 0 upon
cooling at γ = −1.0 × 10−4. The resulting box edge lengths
are L = 1002.5, 29.34, 8.88 (N = 1000) and 5.68 (N = 2000)
for D = 1, 2, 3 and 4, respectively. It has been shown that the
bulk properties of D = 3 BMLJ systems emerge with as few
as 65 particles [44].

Further simulations with only A particles (A100) were
carried out in order to identify the features that distinguish
the vitreous from the crystalline state. Box sizes, adjusted
such that P ≈ 0 for the crystalline state at T = 0, are 1119
(N = 1000), 32.7 (N = 1000), 9.85 (N = 1000), and 6.0639
(N = 2048) for D = 1 to 4. Temperature scanning rates
ranged between γ = ±1.0 × 10−3 and ±1.0 × 10−4. The
D = 2 and 3 systems crystallize spontaneously upon cooling
whereas the D = 4 remained in a metastable state. Therefore
the D = 4 system was heated from an initially prepared fcc
crystal consisting of 44 unit cells that each contain 8 particles
with 24 equidistant neighbors [48].

3. Results and discussion

Since we are interested in the phenomenon of the glass
transition, we have to consider the stability of the model
system against crystallization. Figure 1(a) shows a typical
configuration of the particles for the A80B20 composition, in
two dimensions, cooled to T = 0 at a rate of −1.0 × 10−5. As
observed previously for a similar system [49], the configuration
contains areas of hexagonally crystallized A particles in a
matrix of amorphous AB material, i.e. the system which is
a good glass-former in three dimensions is crystallizing in
two dimensions. In order to suppress these hexagonal A
crystals for D = 2, we selected the composition A65B35.
Figure 1(b) shows a typical configuration of a A65B35 system
which has been cooled to T = 0 at a rate of −1.0 × 10−7,
the slowest rate employed in this study. The structure appears
to be fully amorphous, as required. In the following we will
first discuss the results obtained for the A65B35 composition.
Commonalities and differences between A65B35 and A80B20

for D = 3 will be considered at the end of this section.
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Figure 1. Typical configurations of the A80B20 (a) and A65B35 (b) systems for D = 2 at T = 0. These systems have been cooled to T = 0
with cooling rates γ = −1.0 × 10−5 and γ = −1.0 × 10−7, (a) and (b) respectively. Open and filled disks represent A and B particles,
respectively. Dashed lines indicate the (virtual) boundary of the simulation box.

Figure 2. (a) Temperature dependence of the pressure of the A65B35

systems for D = 1 to 4 upon cooling (dashed lines) followed by
heating (solid lines) at γ = ∓1.0 × 10−5. (b) Temperature
derivatives of the same pressure data.

In figure 2(a) we show the temperature dependence of
the pressure for different values of D. The P(T ) curves
are approximately linear, and their slope increases with the
dimensionality. Recall that the particle density is adjusted for
each dimension such that P ≈ 0 as the temperature reaches
T = 0 upon cooling at γ = −1.0 × 10−4 (see section 2).

Actual pressures obtained after cooling to T = 0 at this
rate are between −0.10 and 0.00. Cooling the system more
slowly results in a more relaxed glass state, i.e. a more efficient
packing of the particles and thus a lower pressure at T = 0.
For the rate γ = −1.0 × 10−5 (figure 2), pressures range from
−0.59 (D = 4) to 0.00 (D = 1). Pressures at T = 0 are small
compared with pressures at Tg, with |P(T = 0)| less that 5%
of P(Tg), as required for consistency.

The figure also shows that there is a hysteresis between the
cooling curve and the heating curve for D � 2, which becomes
more pronounced as D increases. This hysteresis is seen more
clearly in the temperature derivative of the pressure, dP/dT
(figure 2(b)). As it will be discussed below, the glass transition
temperatures for the data shown in figure 2 are Tg = 0.33,
0.58, and 0.89 for D = 2, 3, 4, respectively. These values for
Tg were obtained by first calculating the fictive temperature of
the system, Tf(T ), as defined by Tool [50]. The procedure is
based on analytic approximations for the specific heat of the
supercooled liquid [51] and the glass (further details are given
below). In the liquid state the fictive temperature equals the
temperature, while in the glass state it becomes frozen at a
finite value. We set Tg = Tf(0), the limiting value of the fictive
temperature as the glass stops evolving upon cooling to low
temperatures.

Above the temperature range of this hysteresis loop, the
system is in equilibrium and the pressures upon cooling and
heating coincide. A hysteresis is a hallmark of physical glasses
in the glass transition range [52] and the glass transition found
here is qualitatively consistent with previous observations of
a glass transition in cooling curves obtained with a D =
3, A80B20 BMLJ system [10]. Last not least we remark
that the D = 1 system does not show any sign of a glass
transition since in one dimension this Lennard-Jones model is
not sufficiently frustrated to form a glass. (However, other one-
dimensional models can show a glass transition, see, e.g., [53].)

In order to characterize the local structure of the particles
it is useful to consider the radial pair distribution functions,
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Figure 3. (a) Radial distribution of A–A pairs for A65B35 cooled to
T = 0 at the rate −1.0 × 10−5. Data for D = 1 are multiplied by
0.02. Data for D � 2 are shifted up successively by 5.
(b) Lennard-Jones potential for A–A interaction, truncated and
shifted at r = 2.5.

gαβ(r), defined by [54]

gαβ(r) = L D

F(r, D)Nα Nβ

∑

i∈{α}

∑

j∈{β}
〈δ(r − ri j)〉, (1)

where Nα is the number of particles of type α, ri j is the distance
between particle i and j , and the factor F(r, D) normalizes
gαβ(r) to 1.0 for large r , i.e. F(r, 1) = 2, F(r, 2) = 2πr ,
F(r, 3) = 4πr 2, and F(r, 4) = 2π2r 3.

Figures 3(a), 4(a), and 5(a) show the A–A, A–B and B–B
distributions, respectively, at T = 0. For D = 1 one finds
a first peak in gαβ at a distance σαβ21/6, i.e. at the location
of the minimum in the corresponding pair potential (shown in
panel b of the figures). This is due to the fact that we have
adjusted the pressure to be zero at T = 0. The second and
third A–A peaks in figure 3(a) for D = 1 are at r = 1.80
and r = 2.25 and correspond to ABA and AAA elements
of the particle chain, respectively, where the underlined letters
indicate the atom types considered in the pair distribution. For
gAB(r) for D = 1, chain elements of the types ABB and AAB
give rise to the peaks at r = 1.89 and r = 2.03, respectively.
The D = 1 B–B radial distribution peaks are due to, in order
of increasing r , BB, BAB and BBB chain elements.

For D = 2, the peak at r = 1.76 corresponds to A–A
next-nearest neighbors that are separated by a nearest neighbor
particle of type B, while the peak at r = 2.20 correspond to
A particles which are separated by a nearest neighbor particle
of type A. The D = 2 peaks at r = 1.73 and 1.96 in the A–
B distribution, figure 4, can be interpreted in a similar fashion
and correspond to correlations with two A and two B nearest
neighbors, respectively. In gBB(r) a new B–B peak arises
from the long edge of rectangles formed by four B particles
surrounding an A particle, see figure 1(b).

Figure 4. (a) Radial distribution of A–B pairs for A65B35 cooled to
T = 0 at the rate −1.0 × 10−5. Data for D = 1 are multiplied by
0.02. Data for D � 2 are successively shifted up by 10.
(b) Lennard-Jones potential for A–B interactions, truncated and
shifted at r = 2.0.

Figure 5. (a) Radial distribution of B–B pairs for A65B35 cooled to
T = 0 at the rate −1.0 × 10−5. Data for D = 1 are multiplied by
0.01. Data for D � 2 are successively shifted up by 4.
(b) Lennard-Jones potential for B–B interactions, truncated and
shifted at r = 2.2.

We also mention that a notch can be seen in gAB for D = 2
at r = 2.0, the point where the force is discontinuous due
to the truncation of the potential [47]. It is unlikely that this
discontinuity has a significant impact on the results.

The functions gαβ(r) also show a well defined nearest
neighbor peak for D = 3 and 4, but the peaks at larger
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Figure 6. Potential energy per particle versus temperature for A65B35

upon cooling (dashed lines) followed by heating (solid lines) at
γ = ∓10−5. Potential energies are divided by the number of
neighbors in a closely packed structure (lignancy = 2, 6, 12 and 24
for D = 1, 2, 3, 4, respectively).

distances for these dimensions are much less pronounced than
the ones found for D = 1 and 2, and it becomes difficult to
associate them with particular arrangements of particles. Note
that also the first nearest neighbor peak becomes broader with
increasing D since the typical distance between neighboring
particles will, at large D, be strongly influenced by the type
and the number of the particles that are their common nearest
neighbors. For the A–A correlation the increase of D will,
e.g., make it possible that two A particles share an increasing
number of B particles as first nearest neighbors and, since the
A–B interaction is strongly attractive, thus decrease the nearest
neighbor distance of such an A–A pair. Alternatively an A–
A nearest neighbor pair that shares many A particles as first
nearest neighbors, will have a distance that is somewhat larger
than the average nearest neighbor A–A distance.

This mechanism for reducing the geometric constraints
between particles that are nearest neighbors affects of course
also the second, third, . . .-nearest neighbor configurations.
This is the reason why with increasing D the radial distribution
functions become less structured at a given r . In particular
the location of the second, third, . . .-nearest neighbor peaks
will shift to smaller distances and also the minima between
consecutive peaks will be be less pronounced. This change
in the geometry has the effect that the pressure of the system
increases since the second nearest neighbor particles move to
distances in which the potential is steeper/more attractive and
hence the virial increases.

Having discussed the influence of the dimensionality on
the structure we now present the results regarding the glass
transition. One convenient method to investigate this transition
in real glasses are specific heat measurements. We will
consider the temperature dependence of the specific heat and
energy of the BMLJ system. (See [10–14, 55, 56] for a
discussion how other quantities depend on the cooling rate.)
Figure 6 shows the potential energy per particle for A65B35 as
a function of temperature. For ease of comparison the potential
energies are scaled by the number of nearest neighbors in
closed-packed sphere structures. These lignancy values are

Figure 7. Potential energy per particle versus temperature for
systems containing only type A particles upon cooling (dashed lines)
followed by heating (solid lines) at γ = ∓10−4 for D = 1, 2 and 3.
Data for D = 4 were obtained at γ = ±10−3 by heating and melting
a closed-packed four-dimensional face-centered cubic crystal (lowest
curve), followed by cooling and heating. Potential energies are
divided by the number of neighbors in a closely packed structure
(lignancy = 2, 6, 12 and 24 for D = 1, 2, 3, 4, respectively).

2, 6, 12 and 24 for D = 1–4 [48]. At T = 0, P ≈ 0 the
interaction energy of an isolated pair of A particles is 0.5. From
figure 6 we recognize that for the A65B35 system the actual
values are lower due to the higher A–B binding energy and the
contributions of the next-nearest neighbor interactions. Total
energies per particle (not shown) are negative, indicating bound
states. The slopes of the U(T )/lignancy curves decrease with
increasing D, reflecting enhanced cohesion and stability of the
glass and liquid states per neighbor pair.

First-order melting and crystallization are distinct from
the glass transition. This is shown in figure 7 for constant
volume systems composed entirely of A particles. Box sizes
were adjusted such that P ≈ 0 for the crystalline state at
T = 0, and in order to compare the curves for the different
values of D we have divided them by the corresponding
lignancy. (Note that since the binary system is a good glass-
former, its crystalline structures are very complex and not
really known [57, 58]. Also see reference [59].) For D = 1,
the T -dependence of the potential energy of the chain similar
to that of the random A65B35 chain, and no phase transition
occurs for T > 0, as expected. In this case U(T = 0)/2 is
0.5, as expected, since next-nearest neighbor interactions are
insignificant. The two-dimensional system crystallizes readily
upon cooling near T = 1.7, and upon reheating melting nearly
coincides with the crystallization. Upon cooling the D = 3
system stays in a (metastable) supercooled state down to a
temperature T ≈ 0.9 at which it crystallizes. The melting
of the resulting crystal is observed at around T = 1.8, i.e. at
about twice the temperature of crystallization. (Note that
the exact values for melting and crystallization are probably
affected by finite size effects. Furthermore one should recall
that the resulting ordered structure does not have a long range
positional ordering. However, these two issues are not that
relevant here.)

Interestingly we found that for D = 4 the pure A system
would not crystallize spontaneously. Therefore we assembled
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a dense-packed crystalline face-centered cubic structure with
44 unit cells of eight particles (2048 particles altogether, each
with 24 equidistant nearest neighbors) [48]. Figure 7, lowest
curve, shows that this structure melts at T ≈ 6.6. Once
melted, the D = 4 system does not crystallize upon cooling but
instead forms a glass near T = 1.5 (heating and cooling data
are shown). We conclude that with increasing D spontaneous
crystallization becomes increasingly inhibited, i.e. the glass-
forming ability increases with D. This trend is in agreement
with the conclusions we drew in the discussion of the radial
distribution functions (figures 3, 4, and 5), i.e. that the number
of possible local packings increases rapidly with D and this
entropic factor will make crystallization more difficult.

From figure 7 we also recognize that at T = 0 the
potential energy per lignancy decreases monotonically with D
for liquids as well as for the glasses, in agreement with the
trend observed for the binary mixture, figure 6. This results
reflects the fact that the next-nearest neighbor atoms move
closer to the central atom as D increases and hence lower their
potential energy. The liquid state is characterized by a strong
negative curvature of the U(T ) curves, while the curvature is
much less for the crystal and glass states for D = 2, 3 and 4.

The specific heat at constant volume, cV = dE/dT ,
is shown in figure 8(a). The law of Dulong–Petit requires
that for classical solids limT →0 cV (T ) = D [60] and we
find that the specific heat becomes indeed equal to D as
temperature approaches zero. Also included in the graph is the
T -dependence of the specific heat of the A100 crystals. At low
T the specific heat of the glasses and the crystals decreases
with increasing temperature. This decrease is due to the
anharmonicity of the effective potentials near the equilibrium
positions of the particles. To see this we consider this effect
in detail for the D = 1 case. For a chain segment with
only one type of particle the first three terms of a Taylor
expansion of the effective interparticle potential are given by
U(r) = U0 + sr 2/2 + λr 4, where U0 < 0 is the binding
energy at T = 0. The quadratic term, with s > 0,
leads to the nearly harmonic motion of the particle around
its equilibrium position that gives rise to the Dulong–Petit
result. The leading anharmonic term has a positive coefficient
(λ > 0) due to the repulsive interaction of the Lennard-Jones
potential as neighboring particles approach. For a one-particle
anharmonic oscillator of mass m the classical limit of the
quantum-mechanical result [61] is

C = 1 − 6λ(m/s)2kBT . (2)

The negative term shows that the specific heat decreases in
the vicinity of T = 0. However, the one-particle calculation
on which equation (2) is based overestimates the decrease of
the specific heat of the D = 1 particle chain by about a
factor of two. This discrepancy is due to the multi-particle
effects in a linear chain. Although it is unfortunately not
possible to take into account these effects in an exact way,
there exist approximation schemes to calculate them [62, 63]
and it is found that at low T the specific heat does indeed
decrease linearly with increasing T . These calculations also
show that such a T -dependence is only found in the specific

Figure 8. (a) Constant volume specific heat, per particle, for A65B35

upon cooling (dashed lines) followed by heating (solid lines) at
γ = ∓1.0 × 10−5. The dotted lines show the specific heat of
crystallized A particles upon heating at γ = +1.0 × 10−4. The
cooling data for the crystals (not shown) coincide with the data upon
heating. (b) Same data as in (a) but now divided by the dimension D.

heat at constant volume, whereas the one at constant pressure
increases with increasing T [63].

Figure 8(a) shows that for D = 1 the specific heat of the
A65B35 and A100 chains coincide within numerical accuracy,
i.e. anharmonic effects in the two systems are very similar.
The cV (T ) data also agree in the T -range where cV (T ) is no
longer linear. Therefore, both systems have similar higher-
order anharmonic effects.

Similar results are obtained for the case of two dimensions
for which we can compare the specific heat of the glass at low
temperatures with that of a hexagonal crystals consisting solely
of A particles, figure 8(a). Type A particles by themselves
crystallize readily, typically with about 2 vacancies per 1000 A
particles, and the specific heat curves upon cooling and heating
at γ = ∓10−4 agree with each other (data not shown). We
see that up to T = 0.2 the specific heats of the hexagonal
A phase and A65B35 glass nearly coincide. Therefore we can
conclude that the linear decrease of the specific heat is not
just a particularity of the glassy state, but instead a general
property of both types of condensed Lennard-Jones systems at
low temperatures. Qualitatively the same results are obtained
for D = 3 and 4. This observation is in agreement with
experimental findings since there it has been found that it is
advantageous to crystallize samples in situ after measuring
their specific heats in the supercooled liquid and glassy states.

6
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Figure 9. Constant volume specific heat, per particle, of (a) A65B35 and (b) A80B20 for D = 3 upon cooling (dashed lines) followed by heating
(solid lines). Curves at rates less than γ = 10−3 are shown successively shifted up by 0.5.

By subtracting the measured specific heat of the crystal one
obtains the net glass and supercooled liquid signals, and the
net glass signal is typically indistinguishable from zero [64].

The excess specific heat is defined as �cV (T ) =
cliquid

V (T ) − cglass
V (T ), where cliquid

V is the specific heat of the

system on the (metastable) liquid branch and cglass
V is the

specific heat of the frozen (non-ergodic) glass. At Tg we
observe a step �cV (Tg) as the system switches between the
two states. This step and the hysteresis between heating and
cooling characterizes the glass transition. As with the P(T )

curves, see figure 2, we find no step or hysteresis in �cV

for D = 1. However, for D � 2 the glass transition can
be readily be identified, and we see that Tg increases as the
dimensionality increases. This rise of Tg with D is consistent
with the higher binding energies per nearest neighbor particle
pair (figure 6). Also the amplitude of the hysteresis increases
with D, figure 8(a). In figure 8(b) we normalize cV (T ) by D,
the specific heat at T = 0. Even with this normalization both
�cV (Tg) and the area of the hysteresis loop increase with D,
reflecting the larger number of steric degrees of freedom when
the particles can move in more dimensions.

Figure 8 also shows that above Tg(D) the shape of
the cV (T ) curves is independent of D. This similarity of
the specific heat suggests that, in terms of their thermal
fluctuations, D = 1 particle chains behaves like a fluid
down to T = 0. This observation is in agreement with
analytical calculations for soft-sphere systems which find that
2.0 is the minimum (fractional) dimension required for a glass
transition [27]. The absence of a transition for D = 1 may
be linked to the fact that the A65B35 chains are non-ergodic,
since the initial random order of the particles in the chains
remains fixed. Upon cooling these chains cannot reach an
energetically favorable state with a higher number of nearest

A–B neighbors, while the systems in higher dimensions can
reach such chemically more ordered states.

Since the glass transition is related to the fact that the
system falls out of equilibrium, the specific heat curves will,
at temperatures around Tg, depend on the cooling and heating
rate. In figure 9(a) we show the specific heat of the A65B35

mixture in three dimensions using temperature scanning rates
that are varied by three orders of magnitude. As in real
experiments [1–3, 5, 7, 65], Tg decreases with cooling rate. In
figure 9(b) we show cV (T ) for the A80B20 composition, using
scanning rates that vary by four decades. Although at a first
glance the data for the two compositions look quite similar,
there are significant differences. Firstly in the A65B35 system
the difference between the heating and cooling curves is larger
than in the case of A80B20. This difference may be related, see
the discussion of figure 1, to a higher concentration of locally
frustrated structures in the A65B35 glass, and thus to its better
glass-forming ability and resistance against crystallization.
Secondly the A80B20 data has, for the three slowest rate cooling
curves, an unusual feature that is not present in cV (T ) for the
A65B35 system in that one sees a small peak in the specific
heat that coincides with the maximum of the heating curve,
see figure 9(b). This feature could be a sign of incipient
crystallization, e.g. due to the appearance of sub-critically
sized nuclei. Also see reference [59].

Since D = 2 simulations require less computational effort
than the three-dimensional systems, slower cooling and heating
rates can be investigated. Figure 10 shows the D = 2, A65B35

system for scanning rates that vary by four decades and we see
that all of them have a well defined glass transition. We note
a substantial decrease of the width of the glass transition, in
agreement with the data shown in figure 9. In fact, in general
there is no qualitative difference between this system and the
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Figure 10. Constant volume specific heat, per particle, for A65B35 in
two dimensions upon cooling (dashed lines) followed by heating
(solid lines). Curves at rates slower than γ = 10−3 are shifted up
successively by 0.2.

one in D = 3 and hence we can conclude that qualitatively the
glass transition does not depend on D, if D � 2.

From figures 9 and 10 one recognizes clearly that above
Tg the specific heat increases with decreasing temperature,
in agreement with previous studies of this Lennard-Jones
system [10, 51]. Such a T -dependence is not unexpected
since the relaxation time shows a significant non-Arrhenius
dependence on T [30–32], i.e. the system can be considered
as ‘fragile’ [66], and experimentally it is known that fragile
glass-formers usually have a specific heat that increases with
decreasing T [67, 68].

Due to this increase of cV with decreasing T , the excess
specific heat �cV (T ) = cliquid

V (T ) − cglass
V (T ) becomes

larger at lower temperatures, in accordance with experimental
results [69]. Accordingly the step �cV (Tg) becomes larger as
Tg decreases upon slower cooling. Furthermore we see from
figures 9 and 10 that the heat flow rises above the specific
heat of the supercooled liquid as the glass regains metastable
equilibrium when the system is heated to T > Tg, an effect
that also observed in real experiments and which is due to the
kinetics of the glass transition. We compare the T -dependence
of the specific heat found in the present simulations with
experimental results by using normalized scales. Following
Tool, we scale the ordinate by converting the specific heat
signal into the fictive temperature Tf(T ) of the system [50].
For this we have linearly extrapolated the specific heat of
the glass to the supercooled liquid regime, and the specific

Figure 11. Comparison of the D = 3, A65B35, γ = 10−6 simulation
result with the glass transition in experimental systems [52, 70, 71].
For lithium acetate and GeO2 the data are scaled results from
calorimetric experiments, while for B2O3 and SiO2 the curves are
based on volume expansion and small angle x-ray scattering data,
respectively. Temperature:s are scaled by Tg. Ordinate values are
scaled by subtracting the (extrapolated) signal of the glass state and
dividing the residual by the (extrapolated) supercooled liquid signal.
Curves other than the BMLJ system are shifted up by successive
steps of 1.

heat of the supercooled liquid was extrapolated into to glass
regime [51]. One then subtracts the (extrapolated) glass signal
from the data as well as from the supercooled liquid curve.
Finally one divides the residual curves (cooling and heating)
by the residual supercooled liquid curve. The scaled data
dTf/dT is shown as a function of T/Tg in figure 11. Here
Tg was defined consistently as the value of Tf reached upon
cooling to the lowest temperature. Note that by construction
the scaled signal goes to zero at low temperatures and to
unity at high temperatures. Also included in the graph is
the corresponding data from experiments of different glass-
formers [52, 70, 71]. The comparison of simulations and
experiment shows that the hysteresis at the glass transition of
the BMLJ system reproduces indeed the shape observed in
experiments carried out with fragile and strong glass-formers.
We also see that the width of the glass transition as observed
in the simulation is significantly larger than the one found
even in the strongest glass-forming substances, such as SiO2,
and much larger than the fragile glass-former lithium acetate.
This difference could have been expected since this width
depends not only on the fragility of the glass-former but also
on the cooling rate [10], and the temperature scanning rates of
the simulations are typically 1010 times faster than laboratory
rates [1, 7].

In the following we consider the dependence of the
hysteresis on temperature scanning rate, composition, and
dimensionality of the system in more detail. Figure 12

8
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Figure 12. The total energy per particle for A65B35 in four
dimensions upon cooling (dashed line) followed by heating (solid
line) at rate γ = ∓1.0 × 10−5.

Table 1. Values of the pre-factor for the power-law fits
�E = �E0(γ /10−5)0.17 and �A = �A0(γ /10−5)0.40, representing
the height and area of the hysteresis loop in the total energy,
respectively.

System �E0 × 103 �A0 × 103

A65B35, D = 2 2.1 ± 0.4 8.4 ± 0.7
A65B35, D = 3 6.6 ± 0.8 31 ± 5
A65B35, D = 4 16.0 ± 1.5 76 ± 6
A80B20, D = 3 4.5 ± 0.2 18 ± 2

shows the total energy E(T ) upon cooling and heating for
the four-dimensional A65B35 system. We denote the area of
the hysteresis loop between heating and cooling curves as
�A, and their maximum separation as �E . Figure 13 shows
these two quantities as a function of temperature scanning
rate γ on logarithmic scales. The data points fall, to a
good approximation, onto parallel lines, indicating a power-
law dependence of �A and �E on γ . Therefore we fitted
the data with the functional form �A(γ ) = �A0(γ /10−5)α

and �E(γ ) = �E0(γ /10−5)ε , where �A0 and �E0 are the
area and the maximum separation at γ = 10−5, respectively.
The exponents that best fit all data are α = 0.40 ± 0.02 and
ε = 0.17 ± 0.03. Table 1 lists the pre-factors �A0 and �E0.
From this table, and from figure 13, we can conclude that the
hysteresis effect increases with increasing D, in agreement
with the result shown in figure 8, i.e. that the glass-forming
ability of the system increases with its dimensionality.

A similar analysis can also be done for real systems,
although of course only for D = 3 [70]. It is found that the area
and maximum separation of the hysteresis curves also show a
power-law dependence on the cooling rate, thus showing that
the results from the present simulations are consistent with
real experiments. However, these experiments yield exponents
of 0.29 for area and 0.15 for the height, i.e. different values

Figure 13. Area, (a), and height, (b), of the hysteresis loop at the
glass transition versus the scanning rate on logarithmic scales for
different compositions and number of spatial dimensions. Symbols
correspond to the systems presented in the upper left corner of (a).
Solid lines are fits to the power laws �A = �A0(γ /10−5)α for (a)
and �E = �E0(γ /10−5)ε for (b).

from the one found here and hence we can conclude that
these exponents are not universal, but material specific or
characteristic of the regime of temperature scanning rate.

Since fragile glass-formers systems have relaxation times
τ (T ) that seem to diverge at a finite temperature [66], their
effective activation barriers, i.e. the local slope of log(τ ) versus
1/T is larger than the one for strong glass-formers, if τ

has macroscopic values, e.g. 1 s. The temperature range at
which the system falls out of equilibrium at the glass transition
is therefore trivially related to the fragility of the system,
with fragile (strong) glass-formers showing a transition in a
narrow (wide) temperature range. As mentioned above, the
present BMLJ system is expected to be a fragile glass-former
since its relaxation times show a strongly non-Arrhenius T -
dependence. Using the power-laws approximations for the
scanning rate dependence of the hysteresis loop (figure 13),
we can obtain a rough estimate for the behavior of the BMLJ
systems at laboratory scanning rates (γ = 10−15 ≈ 2 K s−1,
if we identify the A particles as argon atoms). Of course it
is highly uncertain whether or not the present BMLJ system
avoids crystallization at such slow rates. The width of the glass
transition �T is proportional to the ratio �A/�E and thus its
γ -dependence is given by the exponent α − ε. Referring to
figure 11, one can estimate the width of the hysteresis loop
for A65B35 at γ = 10−6 to be �T = 0.5Tg. The power-
law approximation, with α − ε ≈ 0.23, predicts then for
the laboratory rate a �T = 0.004Tg (or �T = 0.027Tg

if using the experimentally derived values α = 0.29 and
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ε = 0.15). By comparison, the width of the (fragile) lithium
acetate glass curve in figure 11 is about 0.04. We conclude
that, based on this analysis, the BMLJ system is indeed fragile,
in agreement with the data from the T -dependence of the
relaxation times [30–32]. Finally we consider how the fragility
depends on D. From table 1 we can define the normalized
width of the glass transition as �A0/(Tg�E0), which gives
12, 8.1 and 5.3 for D = 2, 3 and 4, respectively. We conclude
that the normalized width of the glass transition decreases with
increasing dimensionality, and that fragility increases with D.

4. Summary

We have presented the results of molecular dynamics
simulations in order to study how the calorimetric glass
transition of binary Lennard-Jones systems depends on the
cooling rate and the number of dimensions. The BMLJ systems
were cooled at a constant rate −γ , followed by reheating to
the ergodic liquid state at rate γ . We find that the composition
A80B20, a good glass-former in three dimensions, crystallizes
in two dimensions if γ is small, whereas the composition
A65B35 does not crystallize for any dimension at the cooling
rates investigated here.

For glasses that have been produced with a given (small)
γ we find that the peaks in the radial distribution functions
become quickly washed out with increasing dimensionality D,
reflecting fewer geometric constraints. In particular the nearest
neighbor peak of the radial distribution functions becomes
broader, reflecting a wider range of geometric configurations
in higher dimensions. This is evidence that the glass-forming
ability of the system increases with increasing dimensionality.
As D increases, the first peak in the radial distribution function
shifts closer to the central atom due to force exerted by
the second nearest neighbors on the nearest neighbors, thus
resulting in a stronger T -dependence of the pressure. At low
temperatures the T -dependence of the constant volume specific
heat of the glass is very close to the one of a one-component
Lennard-Jones crystal, showing that the anharmonic effects in
glasses and crystals are quite similar.

A glass transition was observed in two, three and four
dimensions, whereas no glass transition is observed in one
dimension. For D = 1 the specific heat curve resembles at
all temperatures the one of the supercooled liquid for D � 2,
and thus we conclude that the one-dimensional system behaves
kinetically like a liquid down to T = 0.

For the systems that show a glass transition we find
a hysteresis loop (cooling and heating cycle) in the energy
per particle as well as in the pressure of the system. At a
given cooling rate the area of this loop and the temperature
at which it occurs increase with increasing D. Thus this is
further evidence that increasing dimensionality raises the glass-
forming ability of the system.

The glass transition becomes sharper with decreasing
temperature scanning rate and thus the hysteresis loop shrinks.
Power laws can be used to fit scanning rate dependence of
the area and height of these loops. The exponents describing
this γ -dependence seem to be independent of composition
or dimensionality. A similar analysis of experimental data

indicate that these exponents are not universal, but appear to
be specific for the system considered.
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